GPS Sensor for Lego NXT

Technology Masterclass - Fall/winter 2008

Martijn ten Bhomer
m.t.bhomer@student.tue.nl
s040198

Contents

1 Introduction 2
1.1 GPS Sensor e 2
1.2 Challenges 2

2 Process Overview 3

3 Hardware 6
31 GPSmodule 6

3.1.1 Specifications Lo L 6
3.1.2 Connections e 6
3.2 Arduino Mini 7
3.3 Arduino Shield 7
3.3.1 NXT Socket 8
3.32 GPSModule 8
3.3.3 Programpins oL 9
3.34 LED’Ss 9
3.3.5 Finished shield 9
34 Casing e 9

4 Software 12
41 Serial GPS 12
4.2 T2C . . 13

42.1 Lejos I?’C implementation 14
4.2.2 Arduino I?C implementation 14
4.3 Interface protocol 15

5 Application 17
5.1 Numeric degrees o 17
5.2 Bearing L 17
5.3 Distance L e 18

6 Discussion 20

A Electrical circuit 21
Technical drawing casing 22
B.1 Casingfront 22
B.2 Casingback 23
B3 Rendering 24

C Arduino code 24

D Java code 35
D.1 Main Lejosclasso o 35
D.2 GPSSensor Class o v i i v i e 40

1 Introduction

1.1 GPS Sensor

My goal for this technology class is to design a GPS sensor for Lego NXT. Robot
navigation is an interesting field and I think that GPS can contribute in making
more autonomous robots using Lego. GPS is most successful in outdoor situa-
tions over larger distances; the current precision is 10 meters (or at maximum
5 meters). This precision can be interesting enough to develop outdoor appli-
cations using Lego. For example to follow a route, to log location information
or to even integrate location information with external maps including other
information.

This idea is not totally new. In the Lego community there have been at-
tempts! to use GPS information with the NXT. Unfortunately the solutions
developed are much too complex and specific for certain devices (it involves
connecting a GPS receiver through bluetooth with the NXT). Because of these
difficulties the demand for a GPS sensor remains unanswered and open for in-
novation.

My goal is to create an easy to use, plug and play sensor, which works
together with Lejos (or any other NXT software platform). This sensor can be
the beginning of a whole new range of outdoor Lego applications.

1.2 Challenges

The main challenge of this project is to let a GPS module talk with Lego NXT.
The Lego NXT can transmit and receive information using the I2C protocol
(more information about I?C in chapter 4.2 on page 13). Alas, the GPS module
uses a serial protocol (the GPS protocol will be described in chapter 4.1 on
page 12) and cannot communicate directly with 12C . This has been solved by
creating an own interface protocol (chapter 4.3 on page 15).

Another challenge was to make optimal use of the intermediary microcon-
troller between NXT and the GPS module. T wanted to do as much as possible
pre-processing on the microcontroller itself instead of on the Lego NXT.

Other challenges are to design the electronics which will facilitate this inter-
mediary protocol (chapter 3.2 on page 7), and of course the whole sensor needs
a casing to embody the system (chapter 3.4 on page 9).

Lfor example this RC Car: http://letsmakerobots.com/node/1865. Although there is no
concrete documentation on how to realize the GPS connection

2 Process Overview

To give an idea about the different steps in the development process, and how
these steps followed each other I will introduce the process using photographs.

Figure 1: Arduino connected with NXT

Figure 2: GPS connected with the NXT through the Arduino board

Figure 3: Casing parts

Figure 4: Electronic components

Figure 5: Electronic components in casing

Figure 6: Completed sensor

3 Hardware

3.1 GPS module
3.1.1 Specifications

The GPS module I used is the USGlobalSat EM-406A2. This is a relatively
cheap module which has 10 meter Positional Accuracy and even 5 meter when
it receives a WAAS signal (Wide Area Augmentation System?®). The hot-start
of the module is 1 second (last calculated position and which satellites where
in view is still available) warm-start (the last calculated position is available,
but not how many satellites were in view) of the module is 38 seconds and cold-
start takes 42 seconds (all the information is erased and the position has to be
calculated from scratch). An result for the NXT sensor is that the sensor itself
will need this time before it can give accurate location information.

Figure 7: GPS module

3.1.2 Connections

The module has six connections (Figure 8): two ground pins, power input,
RX and TX pins and the 1pps pin. The RX and TX (respectively receive
channel and transmit channel) are the actual pins which are used for the serial
connection. The TX pin is the main transmits channel for outputting navigation
and measurement data. The RX pin can be used to send the module specific
commands or to change settings. It is for example possible to provide location
information to the module to let it find it’s current location quicker. I didn’t
implement this in my Lego sensor, but if quicker start-up time is needed in the
future this can be looked at. The 1pps pin provides one pulse-per-second output
synchronized to GPS time.

2 Available at SparkFun Electronics (http://wuw.sparkfun.com/)

3A feedback loop existing from an extra geostationary satellite which is connected with
multiple ground-stations. These ground-stations are connected to normal orbital satellites
and provide an error signal to the geostationary satellite. The geostationary satellite provides
this error signal to GPS receivers and an WAAS enabled GPS receiver is able to process
this signal. In Europe the equivalent is called EGNOS (European Geostationary Navigation
Overlay Service) and is compatible with the North-American WAAS.

For my application I only needed to use the power input, ground connection
and the TX output. This is further explained in Chapter 3.3 about the Arduino
Shield.

654321 LiCND

LIl v
3. Ry 6354321
4: TX I.—.I PCE
5: GND . |
G6:1FFS

Figure 8: GPS module connections

3.2 Arduino Mini

The Arduino Mini (Figure 9) is a small microcontroller board based on the AT-
megal68 microcontroller. The board provides a lot of possibilities and features
accessible through the Arduino development environment.

For actual implementation in a commercial product this board has some dis-
advantages, mainly price and size. It should be realized that for an commercial
version of this sensor other microcontrollers should be considered. I choose to
use this microcontroller during this technology class because of the good devel-
opment environment and documentation available. I find it also important to
build expertise on using this board because of the possible application of it in
other projects.

X

RX
RESET
GROUND

2
ﬂ
2 4
=
o
=]

+9v
GROUND
RESET
+5V
AD3 ",
AD2
AD1
ADO T
1374
12
1"
10 1

ANALO

DIGITA

JLTJIS 2
soel | Tpor 3

GrounD (O

Figure 9: Arduino Mini and pin-layout

3.3 Arduino Shield

Shields are boards that can be plugged on top of the Arduino PCB and extend
its capabilities. I developed my electronics in the form of a shield because of the

flexibility and the possibility to easy reproduce such a design. The total circuit
is illustrated in figure 10, or for a larger version Appendix A on page 21. In
the center the Atmega microcontroller is visible, on the left side the connector
to the NXT can be found and on the right side the GPS module. Additionally
there are inputs to program the microcontroller and there are two status LED’s.
I will explain the different connections to the microcontroller part by part.

g o

[P S

H

iz

I

]
ﬁs

oY

[=

Figure 10: Electrical circuit

3.3.1 NXT Socket

The main power for the microcontroller is supplied by pin 4 of the NXT socket.
Pin 2 & 3 are both connected to the ground of the electrical circuit. Pin 5 is
the Clock line of the I?C wiring, and pin 6 is the Data line. Pin 5 & 6 are both
connected with pull-up resistors of 82kQ* to pin 4 & pin 5 of the microcontroller
which are respectively the clock and data line for this type of microcontroller.

3.3.2 GPS Module

The power for the GPS module is also supplied by pin 4 of the NXT socket.
The grounds of the module (pin 1 and 5) are connected to the common ground
of the circuit. Pin 3, the receive pin is attached to pin 2 of the microcontroller
which has the name digital port 4. Pin 4 of the GPS module is connected to
pin 1 of the microcontroller (digital port 3).

4This is described in the Lego NXT Hardware Developer Kit http://mindstorms.lego.
com/0Overview/nxtreme.aspx.

3.3.3 Program pins

To program the microcontroller three wires are needed. Pin 1 is the common
ground, pin 2 is used to send data and pin 3 receives the data. Pin 2 is connected
to the receive pin of the microcontroller (pin 30) and pin 3 is connected to the
send pin (pin 31).

3.3.4 LED’s

There are two LED connections on the board to give status information. The
LED’s are connected to pin 9 and pin 10 of the microcontroller. They are
connected in series with a resistor of 56{2. These values can easy be calculated
using ohms law R = % I used LED’s with a desired current of 20 mA and a

voltage drop of 3.8V of the 5V source voltage. R = 538 = 600

3.3.5 Finished shield

Figure 11 shows the finished shields. For future versions this shield can easily
be produced as a PCB, this will make it possible to miniaturize the design by
eliminating the header pins. And will also save a lot of small and frustrating
soldering work.

Figure 11: The finished shield with all the inputs (top and bottom)

3.4 Casing

For the casing of the sensor I wanted to meet these requirements:
e Easy to open and close
e Components modular in casing
e Able to connect to Lego

e Professional appearance integrated with Lego style

The technical drawings of this sensor are available in Appendix B on page 22.

Figure 12: Casing parts

Figure 12 shows the casing of the sensor. I created a casing which can be
opened from one side. The electronics all fit exactly in the designated spots.
For example a rail to slide in the shield and support to fit the NXT socket.

Figure 13: Electronic components modular in casing

Figure 13 shows that the electronics are all modular connected to the shield.
This makes it possible to change parts, and to dismantle the shield completely
from the sensor casing.

10

Figure 14: Completed sensor

Figure 14 shows the final sensor and how it can be connected to Lego.

11

4 Software

4.1 Serial GPS

The GPS protocol is based on the NMEA-0183 standard® for interfacing marine
electronic devices as defined by the National Marine Electronics Association
(NMEA). Within this protocol different output messages can be transferred.
One of these messages is the GPRMC message, the recommended Minimum
Specific GNSS Data. This message contains the bare essentials of GPS data
and contains enough information for this implementation.

This is an example GPRMC output message:

$GPRMC,161229.487 ,A,3723.2475,N,12158.3416 ,W,0.13,309.62,120598, ,x10

From this data we can extract these variables:

| Name | Example | Units [Description \
Message ID $GPRMC RMC protocol header
UTC Time 161229.487 hhmmss.sss
Status A A=data valid or V=data not valid
Latitude 3723.2475 ddmm.mmmm
N/S Indicator N N=north or S=south
Longitude 12158.3416 dddmm.mmmm
E/W Indicator W E=east or W=west
Speed Over Ground | 0.13 knots
Course Over Ground | 309.62 degrees | True
Date 120598 ddmmyy
Magnetic Variation degrees | E=east or W=west
Mode A A=Autonomous, D=DGPS, E=DR
Checksum *10
<CR> <LF> End of message termination

Table 1: GPRMC variables

One of the design challenges was to use the intermediary microcontroller to
it’s full extend. By using it to pre-process the GPRMC messages the sensor be-
comes more usable for direct implementation on the Lego NXT. The extraction
of data from the GPRMC output message has been realized with this code:

5The reference manual from SiRF can be found on http://www.newmicros.com/store/
product_manual/NMEA_Manual.pdf

12

for (int i=0;i<300;i++)

{
//check for the position of the "," separator
if (stringGPS[i]==",")

if (seperatorCounter < 12)

//and store the location in the seperators array
seperators [seperatorCounter|=i;
seperatorCounter—+-+;

}

With the positions of the commas stored in the separators array it becomes
possible to retrieve the beginning and end point for every variable. The total
code for this process can be found in Appendix C on page 24.

4.2 12C

The I2C bus has been developed in the beginning of the 80’s by Philips with the
intend to create an easy connection between processor and chips of a television.
The advantage of this system is that it only uses two wires, which is much more
efficient than the Byte Wide system which has been used until the introduction
of I2C.

The two wired system is possible because the data is transmitted serially,
one bit at a time. One wire is for sending and receiving data (SDA) and the
other is providing a clock (SCL). Important to know is that an 12C bus always
has one Master node - in our case the NXT - and can have up to 127 Slave
nodes.

On low-level view the I2C protocol looks like figure 15. The transfer starts
by sending a start byte (S), the Data line (SDA) is pulled low, while the Clock
line (SCL) stays high. Then, SDA sets the transferred bit while SCL is low
(blue) and the data is received when SCL rises (green). When the transfer is
complete, a stop byte (P) is sent by pulling SDA up, while SCL also remains
high.

Figure 15: Data and Clock line pulses (picture from Wikipedia)

Luckily on higher level we don’t need to deal with the timing of these two

13

lines. Lejos and Arduino both have their own implementations, which makes
this protocol easy to implement.

4.2.1 Lejos I2C implementation
First the I?C classes of Lejos have to be imported.

import lejos.nxt.I2CPort;
import lejos.nxt.I2CSensor;

The class has to extend the I2CSensor class, and the constructor uses a
sensor port as parameter to override the port of the I2CPort class.

public class GPSSensor extends I2CSensor {

public GPSSensor(I2CPort port) {
super (port); //override the I2CPort class
}

The address of the slave device is set, in this case this is 127.

// Start of I2C connection with the sensor,
// the address of the sensor is 127
setAddress (127);

The Lejos function to request data from the slave device is getData. The
first parameter is the register of the device we would like to request data from,
the second is a byte array which stores the actual data and the third parameter
is the length of the byte array.

//the byte array which will be used to save the data
byte[] readData = new byte[11];

//reading the string (transfered in bytes) from the sensor
getData (0, readData, 11);

For the full Lejos code please consult Appendix D.2 on page 40.

4.2.2 Arduino I2C implementation

The Wire library of Arduino® has to be imported to be able to use the 12C
functions of the microcontroller.

#include <Wire.h>

Next we give the command to join the I?C bus, and we define the address
(which also sets this device as a slave device).

Wire. begin (127); //join i2c¢c bus with address 127

Then we create an event listener which will response in the event that data
is requested by the master. In this case the requestEvent function is called.

6The documentation of the library can not be found in the Arduino reference, but in the
Wiring reference http://wiring.org.co/reference/libraries/Wire/Wire_.html

14

//when data is requested requestEvent is called
Wire .onRequest (requestEvent);

When data is requested by the Master node, it is necessary to reply with
data. This can be done using the Wire.send function.

void requestEvent ()

{

//function that is triggered when the I2C
//master requests data (in this case the NIX)
Wire.send (0); //send a zero back to master

}

The full Arduino code can be viewed in Appendix C on page 24.

4.3 Interface protocol

The interface protocol makes it possible to send GPS data through I?C to the
NXT. My goal was to let the sensor do the pre-processing and to have a bi-
directional protocol. This means that for example the NXT can ask "give me
the current latitude" and the sensor replies with "3723.2475", or NXT asks "give
me the current time" and the sensor gives "161229.487". Such a bi-directional
communication is supported by I2C. It is for example possible to create mul-
tiple register on the slave node, and let the Master poll for a specific register.
Unfortunately the Arduino implementation of I*C is not so sophisticated, it
only enables the Master node to send one request, and can in return send data.
That’s why I made my own protocol within I>C that does support bi-directional
communication. It is based on timing.
The protocol exists from the following steps:

1. Fast data requests with 10ms between each other to decide what kind of
data (e.g. 2 x request with 10ms break is latitude, 4 requests is longitude).

2. A pause of 30ms to indicate that the data type has been communicated.
3. A request for the confirmation of the data type.

4. A request to receive byte 35 (character #) to indicate the actual data
transfer starts.

5. A request to receive a byte array with the data.

In Lejos this looks like this:

// Protocol step 1
for (int h = 1; h <= dataType + 1; h++)
{

getData (0, readRespounse, 1);

try { Thread.sleep (10); }

catch (Exception E) { }

15

}

// Protocol step 2

try { Thread.sleep (30); }

catch (Exception E) { }

// Protocol step 3

try { getData(0, readResponse, 1); }

catch (Exception E) { readResponse[0] = 0; }
byteChar = readResponse[0];

//convert byte to int
returnInt = (int) byteChar;

//check if the integer received from the sensor is equeal
//to the datatype we intented
if (returnlnt = dataType)

{
}

// Protocol step 4
try { getData(0, readResponse, 1); }
catch (Exception E) { readResponse[0] = 0; }

data = true;

// 35 is the # sign, means data transfer is starting
if (readResponse[0] = 35)
{

// Protocol step 5

try { Thread.sleep (10); }

catch (Exception E) { }

// reading the string (transfered in bytes) from the sensor
try { getData(0, readData, 11); }

catch (Exception E) { }

The full code can be viewed in Appendix D.2 on page 40. For the Slave
side of the protocol please view the commented requestEvent function code in
Appendix C on page 24.

16

5 Application

The application to demonstrate the Lego NXT GPS Sensor is a robot which can
follow a route. In this report I will focus on the formulas which are necessary
to implement such an application. The code for my specific application can be
found in Appendix D.1 on page 35. All the important GPS functions’ can be
found in the GPSSensor class (Appendix D.2 on page 40).

5.1 Numeric degrees

As explained in Table 1 on page 12 the latitude and longitude from the GPS
module are in ddmm.mmmm (d is degrees, and m are minutes) and dddmm.mmmm
format respectively. To do calculations with these coordinates we need to trans-
late these to numeric degrees. This is rather simple, by dividing the min-
utes by 60 we get degrees. Thus, dd + (mm.mmmm/60) for the latitude and
ddd 4+ (mm.mmmm/60) for the longitude.

In Lejos this looks like this for the latitude.

degrees = Integer.parselnt(x.substring (0, 2));

temp = x.substring (2, 4) + "." 4+ x.substring (4, x.length());
minutes = Float.parseFloat (temp);

minutes = minutes / 60;

decimals = degrees + minutes;

5.2 Bearing

The bearing is the angle between two latitude, longitude points. This is needed
to navigate the robot to the right direction. The formula for the bearing:

latl = start latitude

lat 2 = end latitude

Along = end latitude - start latitude

0 = arctan(sin(Along) xcos(lat2), cos(latl) xsin(lat2)—sin(lat1l) x cos(lat2) x
cos(Along))

We need to pay attention that for this formula the numeric degrees need to
be calculated to radian degrees first. In Lejos the total function looks like this:

//first all the points in degrees are calculated into radians
double lat from rad = Math.toRadians(lat from);

double lat_ to rad = Math.toRadians(lat to);

double long from rad = Math.toRadians (long from);

double long to rad = Math.toRadians(long to);

//the distance between the two longitude points
double dLong = long to_rad — long from rad;

TA great collection of important GPS calculations can be found on http://www.
movable-type.co.uk/scripts/latlong.html.

17

//calculation of the bearing angle

double y = Math.sin (dLong) % Math.cos(lat _to rad);

double x = Math.cos(lat from rad) % Math.sin(lat to_ rad) —
Math. sin (lat _from rad) * Math.cos(lat_to_ rad)
* Math. cos (dLong);

return toBearing ((float) (Math.atan2(y, x)));

5.3 Distance

An important piece of information for a route following robot is to know when
it arrived at its destination. For this we need a formula that can perform such a
function. There are quite some formulas to calculate distances between to points
on earth. Some are based on the model that the Earth is a sphere, and some
are more complex. In my application I tried to implement both the Haversine
formula and the spherical law of cosines formula.

The spherical law of cosines can be described as this:

latl = start latitude

lat 2 = end latitude

longl = start longitude

long2 = end longitude

R = earth radius (6371 km)

d = arccos(sin(latl) xsin(lat2)+cos(latl) x cos(lat2) x cos(long2—longl)) x R

In Lejos the implementation looks like this:

//convert to radians
L1 = Math.toRadians(L1)
L2 = Math.toRadians(L2);
Gl = Math. toRadians (G1);
(G2)

)

G2 = Math.toRadians

Y

double a = Math.pow(Math.sin ((L2 — L1) / 2), 2) + Math.cos(L1)
* Math.cos (L2) % Math.pow(Math.sin ((G2 — G1) / 2), 2);

//great circle distance in radians
double angle = Math.toDegrees (Math.sqrt(a));

//each degree on a great circle of Earth is 60 nautical miles (111120m)
double distance = 111120 % angle;

return distance;

The problem with Lejos is that the square root function yields inaccu-
rate results. The Math.sqrt() function from Lejos is different than the native
Math.sqrt() function of Java. Because a small difference results in a very large
difference in distance it is not possible to use this function in Lejos.

18

Currently I am using a function that looks if the latitude, longitude degrees

are in range, and based on this makes a decision if the robot reached its end
position.

boolean inrange = false;

float difference lat = (float)Math.abs(lat2 — latl);
float difference lon = (float)Math.abs(lon2 — lonl);

if (difference lat < 0.0001 && difference lon < 0.0001)

inrange

}

return inrange;

true;

In the future a better solution should be found. But for this demonstration
application it suffices.

19

6 Discussion

In summary I designed a working GPS sensor compatible with Lego NXT. Cur-
rently the sensor is integrated using Lejos, but other implementations could be
made as well, for example the easy to use Lego Mindstorms program. This is all
possible because the interfacing between the GPS module and I>C fully works.

With a package like this the possibilities of navigation and localizing could be
further extended. The accuracy can be improved by using additional sensors,
for example GSM localizing or accelerometers to measure the exact distance
covered.

Physical improvements can be made in the size of the sensor. For example
by eliminating the header pins from the Arduino board. An even better solution
when considering commercial production is to choose a different microcontroller,
smaller in size and less in features.

In the application of the sensor there are some limitations of the Lejos lan-
guage. Especially its Math functions are currently too limited to do all the
necessary calculations. Perhaps other functions exists which are less intensive
for the NXT. Another solution is to let the calculations also find place on the
microcontroller.

There is a lot to explore with this sensor and many new applications can be
found. It will definitely take Lego beyond a toy.

20

t

ircul

A Electrical ¢

Zsn

Moslsad
losuiFad ane +
[zoonsonlead ane MN|~
lg1o0/ssizad aNev =
y1o0)ad
{d4olioad aND
T [LNIY)Lad
T oNIv)9ad
5 1lsad
= Motxméwon_ﬁ v
L INEdd 080l YLiEd f—
aND % (nLMIzad :
= [axiad (L0800 TWLx)9gd —
SNIdINYHO0Ud G| (o
— i00v
w % 900Y EECEN Sl
T NZ8 i 1108/50a%150d
|_”_|_‘hN YdSiFOavirDd 20A -
-] A leoawleod DOA =
anNe N2 = (coawleod 200 |
— - Loawhod
.J.m A l0oawood (135347904 U%
Q0FINT
891LVOINLY
ON —
Zane m
O 5 LFI9I0
LCH s — oweId
204 = T wEMod
LaND |
ﬁ w 0aMD
3NAONSdD |_| = v
aND anND LIND0SLIXN

t

ircui

Figure 16: Electrical ¢

21

B Technical drawing casing

B.1 Casing front

5}@

rﬂ"g - —

o
SECTION A-A

Oc%\> 057€ FE
s
gﬂ@* I 7 !
119
0/; 7@37 S
9 3 °
< | <
| Il
Uy
| ov'ze ‘
= orve —
Torvi | / 7,% &
E‘ o| o o] B k4
IS = 53| <L
N Ny
ovve

Figure 17: Casing front

22

B.2 Casing back

or've

14

or've

0ov'8c

10

€0

25.30

R2,10

34,40

T

4!

Figure 18: Casing back

23

B.3 Rendering

Figure 19: Rendering

C Arduino code

24

#include <Wire.h>

#include <string.h>
#include <ctype.h>

#include <SoftwareSerial.h>

// Software serial TX & RX Pins for the GPS module
#define SoftrxPin 3
#define SofttxPin 4

// Initiate the software serial connection
SoftwareSerial gpsSerial = SoftwareSerial (SoftrxPin, SofttxPin);

int ledPin = 6; //LED test pin
int ledPin2 = 5; //LED test pin

// Enable/disable debug modes
boolean debug_gps = false;
boolean debug_nxt = false;

// Timer variables

unsigned long lastRequest = 0; //the number of milliseconds from when the
program started running

int timePassed = 0; //interval time

// Protocol variables

int transactionNmr = 0; //which data to transfer

boolean alive = false; //variable to check if the connection is alive
boolean confirmed = false; //to check if the datatype is confirmed
boolean transfer = false; //variable to know when to start transfering
boolean dataAvailable = false; //variable that checks if there was already
data from the gps module

// GPS variables

int byteGPS=-1; //byte containing current received byte

char stringGPS[300] = ""; //string containing the total gps string

int stringGPSPosition=0; //integer toholdthepositionof the current current
gps character

char stringCheck[7] = "SGPRMC"; //string to check if they gps string is of
the type GPRMC (the string that contains actual information)

int stringCheckCounter = 0;

int seperators[13]; //array to hold the location of the commas

int seperatorCounter = 0; //Integer to store the position of the comma

//GPS Strings

char gpsO[7] = ""; //time in UTC (HhMmSs)

char gpsl = ' '; //status of the data (A=active, V=invalid)
char gps2[11] = ""; //latitude

char gps3 = ' '; //latitude Hemisphere (N/S)

char gps4[11] = ""; //longitude

char gps5 = ' '; //longitude Hemisphere (E/W)

char gps6[4] = ""; //velocity (knots)

char gps7[7] = ""; //bearing (degrees)

char gps8[4] = ""; //checksum

void setup ()

{
pinMode (ledPin, OUTPUT); //initialize LED pins

pinMode (ledPin2, OUTPUT);

blinkBothLED () ; // blink leds to indicate the program has
booted

Serial.begin(9600); //start serial for output

gpsSerial.begin(4800); //start serial for communication with GPS

Wire.begin(127); //join i2c bus with address 127

Wire.onRequest (requestEvent); //request event

for (int 1i=0;1<300;i++) { // Initialize a buffer for received data

stringGPS[i]l=" ';
}

Serial.println("Arduino booted");

}

void loop()
{
//check every 100 ms if the connection is still alive
//if the time passed is more then 100 ms, then kill connection
if(millis() - lastRequest > 380 && alive)
{

killTransaction();

}

//poll the GPS module
checkGPS () ;

}

void requestEvent ()
{

//function that is triggered when the I2C master requests data (in this
case the NTX)

timePassed =millis() — lastRequest; //measure how many timepassed between
this request and last request.
lastRequest = millis(); // make this request the last request

//first check if we have an alive connection
if (talive)
//a new transaction starts

{
digitalWrite (ledPin2, HIGH); //make the LED pin high to show a transaction

starts
alive = true; //the connection is alive
transactionNmr = 0; //reset datatype to zero
transactionNmr++; //start counting
Wire.send(0); //send a zero back to master

}

else if (alive)
//a transaction is still running, check which operation to perform based
on the delay time
{

if(timePassed < 30 && !'confirmed)
//the datatype transaction is not yet finished

if (debug_nxt) {
Serial.println(timePassed);

}

Wire.send(0);

transactionNmr++; //increase the datatype

}

else if(timePassed >= 40 && timePassed < 60 && !'confirmed)
//the transaction number is received, the NXT wants confirmation
{
transactionNmr = transactionNmr - 1;
Wire.send(transactionNmr); //send the understood datatype to master
confirmed = true; //confirmed state
if (debug_nxt) {
Serial.println("confirm");
}
}

else if(confirmed && alive && !transfer)
//the actual transaction starts
{
//first send character to indicate the transaction is starting
Wire.send("#");
transfer = true;
if (debug_nxt) {
Serial.println("start");
}
}

else if(confirmed && alive && transfer)
//the actual transaction starts
{
//send the correct data, depending on the datatype (the transactionNmr)
switch (transactionNmr) {
case 0:
if (dataAvailable)
{
Wire.send(gpsO0);
}
else
{
Wire.send("error");
}
if (debug_nxt) {
Serial.println("case 0");
}
break;
case 1:
if (dataAvailable)
{
Wire.send(gpsl);
}
else
{

Wire.send("error");

}

if (debug_nxt) {
Serial.println("case 1");
Serial.println(gpsl);

}

break;

case

if (dataAvailable)

{
Wire.send(gps2);

}

else

{
Wire.send("error");

}

if (debug_nxt)

{
Serial.println("case 2");
Serial.println(gps2);

}

break;

case

if (dataAvailable)

{
Wire.send (gps3);

}

else

{
Wire.send("error");

}

if (debug_nxt) {
Serial.println("case 3");

}
break;
case

if (dataAvailable)

{

Wire.send(gps4);

}

else

{

Wire.send("error");

}

if (debug_nxt)

{
Serial.println("case 4");
Serial.println(sizeof (gps4d));

}

break;

case

if (dataAvailable)

{

Wire.send (gpsb5);

}

else

{

Wire.send("error");

}

if (debug_nxt) {
Serial.println("case 5");
}
break;
case 6
if (dataAvailable)

{
Wire.send(gpsé6);

}

else

{
Wire.send("error");

}

if (debug_nxt) {
Serial.println("case 6");

}

break;

case '/
if (dataAvailable)

{
Wire.send(gps7);

}

else

{
Wire.send("error");

}

if (debug_nxt) {
Serial.println("case 7");

}

break;

case ¢
if (dataAvailable)

{
Wire.send(gps8);

}
else
{
Wire.send("error");
}
if (debug_nxt) {
Serial.println("case 8");
}
break;
default:
Wire.send("error");
if (debug_nxt) {
Serial.println("else");
}
break;
}

killTransaction(); //transaction finished, kill the connection

}
else{
Wire.send(0);

}
}

void checkGPS () {
//function to receive GPS data from the module

digitalWrite (ledPin, LOW); //start by making the LED low
byteGPS=gpsSerial.read(); //read a byte from the serial port

if (byteGPS == -=1) { //if no data is received, then do nothing
delay (100);
}
else {
stringGPS[stringGPSPosition]=byteGPS; //if there is serial port data,
it is put in the buffer
stringGPSPosition++; //and the buffer position is increased

if (byteGPS==13){ //if the received byte is = to 13, end of transmission
stringGPS[stringGPSPosition+1] = '"\0'; //character to end the string
seperatorCounter = 0; //reset counters
stringCheckCounter=0;

for (int i=1;i<7;i++){ //verifies if the received command starts with
SGPRMC (this is the data we would like to process)
if (stringGPS[i]l==stringCheck[i-11]) {
stringCheckCounter++;
}
}

if (stringCheckCounter==6){ //if yes, continue and process the data
boolean firstChecksum = false;

for (int 1=0;1i<300;i++) {
if (stringGPS[i]==", ") { // check for the position of the ","
separator
if (seperatorCounter < 12)
{
seperators[seperatorCounter]=i; //and store the location in the
seperators array
seperatorCounter++;
}
}

if (stringGPS[i]=='*' && !firstChecksum) { // ... and the "*"
seperators[l12]=1i;
firstChecksum = true;

}

/*

the separators array indicate the position of:
0 = the time in UTC (HhMmSs)

1 Status of the data (A=active, V=invalid)
2 = Latitude

3 = Latitude Hemisphere (N/S)
4 = Longitude

5 = Longitude Hemisphere (E/W)
6 = Velocity (knots)

7 = Bearing (degrees)

8 = date UTC (DdMmAa)

9 = Magnetic degrees

12 = Checksum

*/

//check if the data is active

int data = 1;

for (int j=seperators[datal; j<seperators[data+l]-1; j++){
gpsl = stringGPS[j+1];

}

if(gpsl == 'A') //the data is good
{
if (debug_gps) {
Serial.println(" 777777777777777777 "y

}

dataAvailable = true; //data is availabe, enable this boolean

digitalWrite(ledPin, HIGH); //enable the LED pin
emptyStrings(); //empty previous strings

data = 0; //reset data variables
int 1 = 0;

// Now we will store all the data one by one in seperate variables
// thismakes it possible for the protocol to send the correct variable
// when requested.

for (int j=seperators[datal; j<seperators[data+l]-1; j++){
gps0[i] = stringGPS[j+1];
i++;

}

gps0[6] = "\0';

i = 0;

data = 2;

for (int Jj=seperators[datal; j<seperators[data+l]-1; j++) {
gps2[i] = stringGPS[j+1];

i++;
}
gps2[10] = "\0';
i=0;
data = 3;

for (int Jj=seperators[datal; j<seperators[data+l]-1; j++) {
gps3 = stringGPS[j+1];
i++;

}

for (int Jj=seperators|[datal; j<seperators[data+
gps4[i] = stringGPS[j+11;
i++;

}

gps4[10] = "\0';

i=0;

data = 5;

for (int Jj=seperators[datal; j<seperators[data+
gps5 = stringGPS[j+1];

}

i=20;

data = 6;

for (int Jj=seperators[datal; j<seperators[data+
gps6[i] = stringGPS[j+1];
i++;

}

gps6[3] = "\O';

i=0;

data = 7/;

for (int Jj=seperators|[datal; j<seperators[data+
gps7[i] = stringGPS[j+11];
i++;

}

gps7[6]1 = "\0';

i =0;

data = ;

for (int Jj=seperators|[datal; j<seperators[data+
gps8[i] = stringGPS[j+1];
i++4;

}

gps8[3] = "\0';

if (debug_gps)

{
Serial.println(gps0);
Serial.println(gpsl);
Serial.println(gps2);
Serial.println(gps3);
Serial.println(gps4);
Serial.println(gpsb5);
Serial.println(gps6);
Serial.println(gps7);
Serial.println (gps8);

}
}
}
stringGPSPosition = 0;
// Reset the buffer
for (int i=0;i< ;i+4) { //
stringGPS[i]=" ';
}

1=1;3++)

1=1;3++4)
1-17 3++4)
1-1;3++)
1-17 j++)

}
}

void emptyStrings ()
{
//function to clear all the strings
for (int i=0;i<7;i++){ //
gpsO[i]=" ';
}

gpsl = " ',

for (int i=0;i<11;i++){ //
gps2[il=" ";

}

gps3 = ' '

for (int i=0;i<11;i++){ //
gps4[il=" ";
}

gps5 = ' ';

for (int i=0;i<4;i++){ //
gps6[il=" ";
}

for (int 1=0;i<7;i++){ //
gps7[il="";
}
for (int i=0;1i<4;i++){ //
gps8[il=" ";
}
}

void blinkBothLED ()

{
//function to blink both LEDs
digitalWrite (ledPin, HIGH);
digitalWrite (ledPin2, HIGH);
delay (500);
digitalWrite (ledPin, LOW);
digitalWrite (ledPin2, LOW);
delay (500);

}

void killTransaction()
{
// Function to kill the transaction, used when a time out occured.
// or when the data was succesfuly sent.
if (debug_nxt) {
Serial.println("transaction stopped");
}
if (debug_nxt) {
Serial.println(" ");

}
digitalWrite (ledPin2, LOW);

alive = false;
confirmed = false;
transfer = false;
transactionNmr = 0;

D Java code

D.1

Main Lejos class

35

package gps;

import compasNavigator;

import lejos.navigation.CompassNavigator;
import lejos.navigation.CompassPilot;
import lejos.nxt.¥*;

public class i2c_test extends Thread {
//variable to store the current position
private static double[] currentPos = new double[] { 0.0, 0.0 };

//the array with points to travel to
private static double[][] travelTo = new doublel]
{ 51.181465, 5.9576449 }, { 51.181652, 5.

SR

[]
9582815 } };

//current destination point from the destination array
public static int gotoPoint = 0;

//temporary strings to store the latitude and longitude
String latitude;
String longitude;

//floats to store the latitude longitude when they have been typecasted
float latitude_decimals = 0.0f;
float longitude_decimals = 0.0f;

//variables to see if the robot is in rang of its destination
public static boolean inrange = false;
double distance = 0.0f;

//the angle between the current and desitnation point
public static float bearing = 0.0f;
int distance_meters = 0;

//variable to check if we are using old or new data
boolean buffer = false;

//initiate classes

public static GPSSensor gps;

public static CompassPilot pilot;

public static CompassNavigator navigator;

public static void main(String[] args) {
LCD.clear();
LCD.drawString("calibrating", 0, 0);
LCD.refresh();

gps = new GPSSensor (SensorPort.S1); // create a new GPSSensor object

//Compass navigator variables
float WheelDiameter = 5.6f;
float TrackWidth = 18;

//Full speed ahead
Motor.A.setPower (100);
Motor.B.setPower (100);

//Create the Compass navigator object, this will help us navigating

//using the digital compass.

pilot = new CompassPilot (SensorPort.S2, WheelDiameter, TrackWidth,
Motor.A, Motor.B);

navigator = new CompassNavigator (pilot);

navigator.calibrateCompass();

//Create and start the navigation thread
Thread gpsThread = new i2c_test();
gpsThread.start () ;

while (true) {
// all the LCD output and buttons
LCD.drawString("heading " 4+ pilot.getAngle(), 0, 5);
LCD.refresh();

if (Button.LEFT.isPressed()) {
LCD.clear();
LCD.drawString("calibrating", 0, 0);
LCD.refresh();
navigator.calibrateCompass () ;

}

if (Button.ESCAPE.isPressed()) {
System.exit (0);
}

}

public void run() {
while (true) {
// read the latitude information
latitude = gps.doReading(2?);

// pause for 200 ms
try {

Thread.sleep (200);
} catch (Exception E) {
}

//read the longitude data
longitude = gps.doReading(4);

//convert latitude and longitude to decimal degrees
latitude_decimals = gps.toDecimalDegrees(latitude, "lat");
longitude_decimals = gps.toDecimalDegrees (longitude, "long");

buffer = false;

if (latitude_decimals > 0) {
// has to be larger then zero
currentPos[0] = latitude_decimals;

} else {
// otherwise we use data from the buffer
buffer = true;

}

if (longitude_decimals > 0) {

currentPos[1l] = longitude_decimals;
} else {
buffer = true;

}

// calculate data using the spherical law of cosines,

// unfortunately the square root function of Lejos is not good
// enough.

// distance = gps.calculateDistance (currentPos[0],

// currentPos[1l],

// travelTo[0][0], travelTo[0][1]);

// distance_meters = (int) (Math.abs (distance));

// therefore (for now) use the alternate inRange function)
inrange = gps.inRange(currentPos[0], currentPos[1],
travelTo[gotoPoint] [0], travelTo[gotoPoint][1]);

// calculate the bearing to the destination

bearing = (int) Math.abs(gps.calculateBearing(currentPos[0],
currentPos[1], travelTo[gotoPoint][0],
travelTo[gotoPoint][1]1));

// print everything on the screen

LCD.clear();

LCD.drawString("lat " + currentPos[0], 0O, 0);
LCD.drawString("long " + currentPos[1], 0, 1);
LCD.drawString("inrange " 4+ inrange, 0, 3);
LCD.drawString("bearing " + bearing, 0, 4);
LCD.drawString("buffer " + buffer, 0, 6);
LCD.refresh();

B W o~

// let the robot rotate tothe calculatedbearingusingthedigital
// compass
pilot.rotateTo((int) bearing);

if (!inrange) {
// 1f we didn't arrive yet we will drive for two seconds

Motor.A.forward();
Motor.B.forward();

try {
Thread.sleep (2000);
} catch (Exception E) {

}

Motor.A.stop();
Motor.B.stop();

} else {
// 1f we did arrive, then goto the next point in the destination
// array
if (gotoPoint == 0) {
gotoPoint = 1;
} else {
gotoPoint = 0;
}

LCD.clear();

LCD.drawString("lat " + currentPos[0], 0O, 0);
LCD.drawString("long " + currentPos[1], 0, 1);
LCD.drawString("inrange " 4+ inrange, 0, 3);
LCD.drawString("bearing " + bearing, 0, %4);
LCD.drawString("point " 4 gotoPoint, 0, 6);
LCD.refresh();

try {

Thread.sleep (1000);
} catch (Exception E) {
}

D.2 GPSSensor Class

40

package gps;

import lejos.nxt.I2CPort;
import lejos.nxt.I2CSensor;

public class GPSSensor extends I2CSensor {

public GPSSensor (I2CPort port) {

}

super (port); //override the I2CPort class

public String gpsTransaction(int dataType) {

//variables
String message = ""; // string to hold the output message of this
// function
boolean data = false; // boolean to check if the correct datatype
// was received by the sensor
int returnInt = 0; // integer that holds the data type received by
// arduino

byte[] readResponse =new byte[1]; // byte array to store the response
// from the sensor

byte[] readData = new byte[l1]; // byte array to store the actual
// data from the sensor

byte byteChar; // single byte used as a buffer

// Start of I2C connection with the sensor, the address of the sensor
// is 127
setAddress (127);

/*

* The I2C implementation of Arduino is not able to use registers,
*thereforeIwroteaprotocolwhichmakes it possibletofetchspecific
* data from the GPS sensor. Steps of the protocol:

*

* 1. Fast readings within 10ms of each other to decide what kind
* of data (e.g. 2 x reading with 10ms break is latitude, 4x reading

* is longitude)

* 2. A pause of 30ms to indicate the dataType has been

* transfered.

* 3. Read the sensor to receive an confirmation of the datatype.
* 4, Read the sensor to receive byte 35 (character #) to

* indicate data transfer starts.

* 5. Recelve a byte array with the

* actual data.

*/

// Protocol step 1
for (int h = 1; h <= dataType + 1; h++) {
getData (0, readResponse, 1);
try {
Thread.sleep(10);
} catch (Exception e) {
}
}

// Protocol step 2

try {
Thread.sleep (30);
} catch (Exception E) {

}

// Protocol step 3
try {
getData (0, readResponse, 1);
} catch (Exception e) {
readResponse[0] = 0;

}

byteChar = readResponsel[0];
returnInt = (int) byteChar; // convert byte to int

if (returnInt == dataType) { // check if the integer received from
// the sensor is equeal to datatype we
// want
data = true;
} else {
message = "error"; // if the step failed, error message will be

// sent
data = false;

}

if (data) { // if there was no error continue with the protocol
try {
Thread.sleep(10);
} catch (Exception e) {
}

// Protocol step 4
try {

getData (0, readResponse, 1);
} catch (Exception e) {

readResponse[0] = 0;
}
if (readResponse[0] ==35) // 35 is the # sign, means data transfer
// is starting here after
{

// Protocol step 5
try {
Thread.sleep(10);
} catch (Exception e) {
}

try {
getData (0, readData, 11); // reading the string
// (transfered in bytes) from
// the sensor
} catch (Exception e) {
for (int i = 0; i < readData.length; i++) {
readDatal[i] = 0;
}

for (int j = 0; Jj < readData.length; j++) {

String tempstring=""; // creatinga stringof the bytes,
// by typecasting the bytes to
// chars

tempstring += (char) readDataljl;

try {
int tempint = Integer.parselnt (tempstring);
// for current implementation only integers will be
// used, check if it is a string
message += tempstring;

} catch (Exception e) {

}

}

} else {
message = "error";

}
}

return (message);

}

public String doReading(int dataType) {
/*this functionisa "rescue function" for theactual "gpsTransaction"
* function. If the gpsTransaction fails, this function will repeat
* for a fixed amount of times.

*/
String message = ""; // variable to hold the message by the sensor
boolean succes = false;

int counter = 0; // counter to see how many times we tried

while (!succes) {
message = gpsTransaction(dataType); // the call to the gps sensor
// transaction function

if (counter >= 5) { // if we didn't receive a result for five
// times, we stop trying for this call
message = "timeout";

}

if (message.equals("error")) {
// if an error is received by the gps transaction function, then
// we didn't succeed

succes = false;
message = "error'";
} else {

// otherwise we succeeded and we can stop trying.
succes = true;

}

counter++;

try {
/*

* pause for a short while before trying again.

* Keep in mind that the total repetitions of this function
* shouldn't be larger then the time between sensor readings.
*/
Thread.sleep (100);
} catch (Exception e) {
}
}

return (message);

}

public float toDecimalDegrees (String x, String type) {
/*
* The latitude and longitude variables from the gps sensor are in
the degrees, minutes format.
To be able to do calculations with it we need to convert them to
decimal degrees.
We can do this by splitting the degrees and minutes part, and diving
* the minutes part by 60.
*/
float degrees = 0.0f;
float minutes = 0.0f;
float decimals = 0.0f;
String temp;

* % X

if (type.equals("lat")) {

try {
degrees = Integer.parselnt (x.substring(0, 2));
temp = x.substring (2, 4) + "." + x.substring (4, x.length());
minutes = Float.parseFloat (temp);
minutes = minutes / 60;
decimals = degrees + minutes;

} catch (Exception e) {
decimals = 0.0f;

}
} else if (type.equals("long")) {

try {
degrees = Integer.parselnt (x.substring(0, 3));
temp = x.substring (3, 5) +"." + x.substring (5, x.length());
minutes = Float.parseFloat (temp);
minutes = minutes / 60;
decimals = degrees + minutes;

} catch (Exception e) {
decimals = 0.0f;
}
}

return decimals;

}

public float calculateBearing(double lat_from, double long_from,
double lat_to, double long_to) {
/*
* The bearing is the angle between two latitude, longitude points.
* this is needed to navigate the robot to the right direction.

*/

}

// first all the points in degrees are calculated into radians
double lat_from_rad = Math.toRadians(lat_from);

double lat_to_rad = Math.toRadians(lat_to);

double long_from_rad = Math.toRadians(long_from);

double long_to_rad = Math.toRadians(long_to);

// the distance between the two longitude points
double dLong = long_to_rad - long_from_rad;

// calculation of the bearing angle

double y = Math.sin(dLong) * Math.cos(lat_to_rad);

double x = Math.cos(lat_from_rad) * Math.sin(lat_to_rad)
— Math.sin(lat_from_rad) * Math.cos(lat_to_rad)
* Math.cos (dLong);

return toBearing((float) (Math.atan2(y, x)));

public double calculateDistance (double latl, double lonl, double lat2,

}

double lon2) {
/* calculation of the distance using two latitude longitude points
* using the spherical law of cosines. This formula uses a spherical
* model of the earth.

*/

double L1 = latl;
double G1 = lonl;
double L2 = lat2;
double G2 = lon2;

// convert to radians
L1 = Math.toRadians(L1);

L2 = Math.toRadians (L2);
Gl = Math.toRadians (G1l);
G2 = Math.toRadians (G2);

double a = Math.pow(Math.sin((L2 - L1) / 2), 2) + Math.cos(L1)
* Math.cos(L2) * Math.pow(Math.sin((G2 - G1) / 2), 2);

// great circle distance in radians
double angle = Math.toDegrees(Math.sgrt (a));

// each degree on a great circle of Earth is 60 nautical miles (111120
// meters)

double distance = 111120 * angle;

return distance;

public boolean inRange (double latl, double lonl, double lat2,

double lon2) {
/* a method to see if the robot is in range of a latitude longitude
* point that uses less computing power. This is necessary because
* both the Haversine and the spherical law of cosines can not be
* computed by Lejos.
*/

boolean inrange = false;

float difference_lat
float difference_lon

(float)Math.abs(lat2 - latl);
(float)Math.abs(lon2 - lonl);

if(difference_lat < 0.0001 && difference_lon < 0.0001)
{

inrange = true;
}

return inrange;

}

private float toBearing(float rad) // convert radians to degrees (as
// bearing: 0...360)
{
return (float) ((int) (Math.toDegrees(rad)) % 360);
}

	Copy of Front cover report
	Report Technology Class
	Copy of Back cover report

